Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication
نویسندگان
چکیده
ÐIn this work, we show that the standard graph-partitioning-based decomposition of sparse matrices does not reflect the actual communication volume requirement for parallel matrix-vector multiplication. We propose two computational hypergraph models which avoid this crucial deficiency of the graph model. The proposed models reduce the decomposition problem to the well-known hypergraph partitioning problem. The recently proposed successful multilevel framework is exploited to develop a multilevel hypergraph partitioning tool PaToH for the experimental verification of our proposed hypergraph models. Experimental results on a wide range of realistic sparse test matrices confirm the validity of the proposed hypergraph models. In the decomposition of the test matrices, the hypergraph models using PaToH and hMeTiS result in up to 63 percent less communication volume (30 to 38 percent less on the average) than the graph model using MeTiS, while PaToH is only 1.3±2.3 times slower than MeTiS on the average. Index TermsÐSparse matrices, matrix multiplication, parallel processing, matrix decomposition, computational graph model, graph partitioning, computational hypergraph model, hypergraph partitioning.
منابع مشابه
Hypergraph Models for Sparse Matrix Partitioning and Reordering
HYPERGRAPH MODELS FOR SPARSE MATRIX PARTITIONING AND REORDERING Umit V. C ataly urek Ph.D. in Computer Engineering and Information Science Supervisor: Assoc. Prof. Cevdet Aykanat November, 1999 Graphs have been widely used to represent sparse matrices for various scienti c applications including one-dimensional (1D) decomposition of sparse matrices for parallel sparse-matrix vector multiplic...
متن کاملA General Graph Model for Representing Exact Communication Volume in Parallel Sparse Matrix-Vector Multiplication
In this paper, we present a new graph model of sparse matrix decomposition for parallel sparse matrix–vector multiplication. Our model differs from previous graph-based approaches in two main respects. Firstly, our model is based on edge colouring rather than vertex partitioning. Secondly, our model is able to correctly quantify and minimise the total communication volume of the parallel sparse...
متن کاملRevisiting Hypergraph Models for Sparse Matrix Decomposition
We provide an exposition of the hypergraph models for parallel sparse matrix-vector multiplies based on one-dimensional (1D) matrix partitioning. Our aim is to emphasize the expressive power of the hypergraph models. We first set forth an elementary hypergraph model in which vertices represent the data elements of a matrix-vector multiply operation and nets encode data dependencies. We then app...
متن کاملDecomposing Irregularly Sparse Matrices for Parallel Matrix-Vector Multiplication
In this work we show the de ciencies of the graph model for decomposing sparse matrices for parallel matrix vector multiplica tion Then we propose two hypergraph models which avoid all de cien cies of the graph model The proposed models reduce the decomposition problem to the well known hypergraph partitioning problem widely en countered in circuit partitioning in VLSI We have implemented fast ...
متن کاملCombinatorial Algorithms for Parallel Sparse Matrix Distributions
Combinatorial algorithms have long played a crucial enabling role in parallel computing. An important problem in sparse matrix computations is how to distribute the sparse matrix and vectors among processors. We review graph, bipartite graph, and hypergraph models for both 1d (row or column) distributions and 2d distributions. A valuable tool is hypergraph partitioning. We present results using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Parallel Distrib. Syst.
دوره 10 شماره
صفحات -
تاریخ انتشار 1999